Entropy generation due to laminar forced convection in the entrance region of a concentric annulus
نویسندگان
چکیده
This study is focused on the entropy production due to laminar forced convection in the entrance region of a concentric cylindrical annulus. The present hydrodynamic and temperature fields are obtained numerically. Local entropy generation distributions are obtained based on the resulting velocity and temperature fields by solving the entropy generation equation. The effect of different flow parameters on thermal, viscous, and total entropy generation is studied for different thermal boundary conditions. Moreover, the effect of radius ratio on the entropy generation is investigated. Entropy generation was found to be inversely proportional to both Reynolds number and the dimensionless entrance temperature. The results also show that increasing Eckert number and/or the radius ratio will increase the entropy generation. Finally, it is found that thermal entropy generation is relatively dominant over viscous entropy generation. # 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Ivestigation of Entropy Generation in 3-D Laminar Forced Convection Flow over a Backward Facing Step with Bleeding
A numerical investigation of entropy generation in laminar forced convection of gas flow over a backward facing step in a horizontal duct under bleeding condition is presented. For calculation of entropy generation from the second law of thermodynamics in a forced convection flow, the velocity and temperature distributions are primary needed. For this purpose, the three-dimensional Cartesian co...
متن کاملForced Convection Heat Transfer of Giesekus Viscoelastic Fluid in Concentric Annulus with both Cylinders Rotation
A theoretical solution is presented for the forced convection heat transfer of a viscoelastic fluid obeying the Giesekus constitutive equation in a concentric annulus under steady state, laminar, and purely tangential flow. A relative rotational motion exists between the inner and the outer cylinders, which induces the flow. A constant temperature was set in both cylinders, in this study. The f...
متن کاملNumerical Study of Mixed Convection of Nanofluid in a Concentric Annulus with Rotating Inner Cylinder
In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus withrotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constanttemperature Ti and To respectively, where Ti>To. The annular space is filled with Alumina-water nanofluid.The governing equations with the corresponded boundary conditions in the polar coord...
متن کاملEntropy generation calculation for laminar fully developed forced flow and heat transfer of nanofluids inside annuli
In this paper, second law analysis for calculations of the entropy generation due to the flow andheat transfer of water-Al2O3 and ethylene glycol-Al2O3 nanofluids inside annuli is presented. Thephysical properties of the nanofluids are calculated using empirical correlations. Constant heatfluxes at inner surface of the annuli are considered and fully developed condition for fluid flowand heat t...
متن کاملLattice Boltzmann Simulation of Nanofluids Natural Convection Heat Transfer in Concentric Annulus (TECHNICAL NOTE)
Abstract This study is applied Lattice Boltzmann Method to investigate the natural convection flow utilizing nanofluids in a concentric annulus. A numerical strategy presents for dealing with curved boundaries of second order accuracy for both velocity and temperature fields. The fluid between the cylinders is a water-based nanofluid containing different types of nanoparticles: copper (Cu), a...
متن کامل